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Abstract—A modulated simple wave theory is developed for transverse cylindrical motions of an
unstrained incompressible isotropic elastic non-conductor with the aid of a modified version of
Hunter and Keller's “Weakly Nonlinear Geometrical Optics”™ method. This theory is then used to
construct shock wave solutions using the shock-fitting method. The evolution law thus derived
shows that the effect of nonlincarity on the evolution of transverse cylindrical shock waves is
cumulative, but that by the time it becomes most pronounced, geometrical spreading has alrcady
attenuated the shock amplitude until it is exponentially small. It follows that the lincar theory gives
satisfactory results for the propagation of transverse cylindrical shock waves. This is in sharp
contrast to the situation for plane transverse shock wives whose amplitudes decay in the presence
of material nonlinearities whilst the linear theory predicts constant amplitudes. Where it is present,
geometrical spreading would appear to be a more potent decay mechanism than material non-
linearity.

{. INTRODUCTION

The most important property of the effects of weak nonlinearity on wave propagation is
that they are cumulative and are significant only for great enough distances of travel. It is
therefore of interest to investigate how the evolution of shock waves is affected by material
nonlincarity, geometrical spreading and internal dissipation, and especially, how important
the former is in the presence of the last two so that we can obtain a clear understanding of
the validity of linear theories. In a previous paper (see Fu and Scott, 1989¢). we have studied
the combined effects of material nonlincarity and geometrical spreading on the propagation
of dilatational spherical and cylindrical shock waves. In this paper, it is the propagation of
transverse cylindrical shock waves which concerns us,

Shock waves are very different in their evolutionary behaviour from acceleration waves
or other higher order discontinuities and are much more difficult to analyze. The difficulty
lies in that shock waves are always coupled in their evolutionary behaviour with the other
higher order discontinuities which accompany them. If onc follows the same procedure as
for acceleration waves, one finds thut the shock velocity depends on the shock amplitude,
whilst the shock amplitude is governed by an evolution equation which also involves the
amplitude of the accompanying second-order discontinuity. We derive a second evolution
equation for the amplitude of the accompanying second-order discontinuity which involves
the amplitude of the accompanying third-order discontinuity. This procedure could be
carried out to higher orders. In the case of curved shock waves. the evolution of shock
waves is further complicated by geometrical considerations, for, in general, the shock
surface geometry has to be determined together with the shock amplitude. Itis in general,
therefore, not possible to derive an exact evolution law. It is possibly because of this
that works on the global evolutionary behaviour of shock waves are relatively sparse in
comparison with the abundant literature on acceleration waves ; previous studies have been
in the main confined to the general properties and the instantancous decay behaviour of
shock waves, see. for example, Eringen and Suhubi (1974), McCarthy (1975), Wesolowski
and Burger (1977) and Ukeje (1981, 1982). The exact evolution equations for a curved
shock wave of the most general geometry and its accompanying sccond-order discontinuity
have been neatly derived by Li and Ting (1982) and Ting and Li (1983). who have also
suggested several choices of the direction in which the growth or decay of the discontinuity
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is measured in order to simplify the evolution equations. However, they do not discuss
solutions of these equations.

Fu and Scott have employed two different approximate methods to derive asymptotic
evolution laws for each of plane dilatational shock waves (1989a). plane transverse shock
waves { 1989b) and curved dilatational shock waves (1989¢). The first approximate method.
which they call the singular surface method, is u combination of singular surface theory
and perturbation methods. The second method is the shock-fitting method based on simple
wave theories. The two methods are complementary to each other and have differing
advantages and disadvantages. The singular surface method is well-adapted to all problems
of shock wave propagation, but it needs to be underpinned by an assumption concerning
the amplitude of the accompanying third-order discontinuity which is such as to allow the
term containing this quantity to be neglected. The shock-fitting method. on the other hand.
gives more complete results than the singular surface method. but since it is based upon
simple wave theories (and exact simple wave solutions exist only in plane motions of elastic
non-conductors for which the isentropic assumption is valid). the shock-fitting method can
only be applied to curved shock waves or shock waves travelling in materials with internal
dissipation when an approximate simple wave solution can be found. In Fu and Scott’s
(1989¢) discussion of curved dilatational shock waves, a modulated simple wave theory.
which s valid under the small-amplitude. finite-rate assumption. waus established with the
aid of Hunter and Keller's (1983) “Weakly Nonlineur Geometrical Optics™ (hereinafter
WNGO) method.

The specific problem we consider in this puper is that of an initially unstrained incom-
pressible isotropic clastic non-conductor with a circular cylindrical cavity of radius r, which
is scl in motion by prescribing the azimuthal velocity at the ioternal boundary r = r,, for
all positive times, By integration of the prescribed velocity at the boundary we see that this
problem is equivalent to a displacement boundary value problem. The material is taken to
be incompressible to ensure that transverse waves may propagate: it is taken to be
unstrained and isotropic to ensure that the initially circular wave fronts remain so as they
propagate through the material.

[t is because of the more gencral material constitution of solids that the transverse
motions discussed here are possible, even though they cannot occur in gases. This mukes
the present problem of special interest since it can be shown that it cannot be treated by
Varley and Cumberbatch's (1966) theory of relatively undistorted waves or by Hunter
and Keller's WNGO method and acither can it be treated by Anile’s (1984) Generalized
Wavefront Expansion method. All of these methods have been shown to give satisfuctory
results for problems in gas dynamics. However, when applied to the present problem they
give merely the same results as the lincar theory gives. We shall see that this is because the
characteristic velocity contains no term that is lincar in the shock amplitude, which implics
that the entropy jump is of fourth order in the shock amplitude, rather thun third order.

This paper is organized as follows. After sctting up the basic equations and determining
the shock velocity in Section 2, we derive in Section 3 a modulated transverse cylindrical
simple wave theory using the procedure mentioned above. In Section 4, we show how to
construet shock witve solutions from the modulated simple wave solutions by using the
shock-fitting method. whilst in Section 5 we show how to derive evolution faws using an
alternative method, namely that of singular surfuces. The final section is devoted to a
discussion of the resuits obtained in this paper, First, we explain the apparent disagreement
between the evolution laws obtained by the two different approximate methods. We go
on to discuss the competing decay mechanisms of geometrical spreading and material
nonlincarity and conclude that the former is much the more potent. Finally, we show how
to recover the evolution laws for plane transverse shock waves from those derived here for
cylindrical waves by taking an appropriate limit.

2. BASIC EQUATIONS AND THE SHOCK VELOCITY

Let X, A4 = 1,2, 3. be the coordinates of a particle in the reference configuration with
respect to a rectangular Cartesian coordinate system and x,, i = 1,2, 3. be the coordinates
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in the current configuration of the same particle with respect to the same coordinate system.
A motion is described by the continuous function x, = x,(X,.?) in terms of which the
deformation gradient is defined by F,, = ¢x,/cX,.

We consider the propagation of a transverse cylindrical shock wave into an unstrained
incompressible isotropic elastic non-conductor r = (X + X3)"? > r,. [t can easily be shown
with the aid of the jump condition for the conservation of energy that the entropy jump
across such a transverse cylindrical shock wave is of fourth order in the shock amplitude.
It is well known that the material time derivative of the entropy vanishes away from a shock
in an elastic non-conductor. We shall therefore work with the isentropic assumption since
this is valid within the order of approximation considered here. The basic equations then
simply consist of the equations for the conservation of linear momentum and the constitutive
equations. In the material description, considerations of the conservation of linear momen-
tum give the equations of motion

Mg = P (H
away from a shock in the absence of body forces and yield the jump conditions
[pUsti+n, N,J=0 2

across a shock. Here m,, is the first Piola-Kirchhoff stress tensor and p, Uy and N, are in
turn the mass density. the propagation speed of the shock and the unit normal to the shock
surface in the reference configuration (which we take to be the undisturbed state). The
vector N is, of course, a radial vector in the (X, X';)-plane. For any quantity /, the jump
across the shocek surface is defined by

Ul=s -s.
superscripts 4+ and =" signilying evaluation just ahead of the shock and immediately
behind the shock, respectively.

For an clastic non-conductor which suffers the single constraint of incompressibility,
that is,

the total stress is the sum of a constitutive stress and a reaction stress assoctated with the
constraint :

R4 = T+ PR, (3)

My = Comy = JF 4)

The function p(X,. 1) is an arbitrary pressure, not directly dependent on F,,, which is chosen
so that the equations of motion and the boundary conditions are satisfied. The factor J has
been allowed to remain in the definition (4b) of the constraint stress, cven though it is equal
to unity, in order to preserve certain skew-symmetric tensor propertics stated in the next
paragraph. This is merely for convenicnce, however. as in either casc the arbitrary pressure
p multiplying the constraint tensors does not appear in the final equations. The specific
internal encrgy function ¢ is independent of the entropy under the isentropic assumption
and because the material is both isotropic and incompressible depends on the deformation
gradient F,, only through the two invariants
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l,=er. l;=§er:

where C
For later use. we define

FrF is the right Cauchy—Green strain tensor. Thus ¢ = ¢(/,. /).

oy . oy
B = iF, 8 = e-l—__l—g.
Efvac = Ef%;‘.; EN,B,.( c’f?:’z‘;‘](
Ezh,umo = ﬁ;%%%m E.’,-,-amn = E—f/—%ﬁ (5)
With the aid of (4b). we obtain
Els = J(Fy'Fg)' ~ Fi)'Fg"). (6)

It is seen that E},;; is skew-symmetric with respect to both (i.f) and (A. B). It can easily
be shown with the aid of (4b) that E?mc and EX gcp are also skew-symmetric with
respect to the interchange of any pair of lower case, or upper case. suffices. Therefore, their
inner products with any symmetric tensor are zero.,

Let R, denote the unit polarization vector which for the purely azimuthal transverse
waves under discussion here is orthogonal to the unit wave normal vector N, and lies in
the (X, X55)-plance:

RN, =0. (7
Thus R, is a unit azimuthal vector. We may write
[v] =¢R, ®)

where ¢ is the shock amplitude. 1t is convenient to define two other unit vectors M and n,
by

AI:I = ‘51.1 RI‘ n, = ‘51.4 NA\ (9)
and it can easily be shown that
LM ! oM,
\,” - N,| N’y‘ '('.‘"X'; =
CR, R,
ax, = " Me Omgyp =0,
Ny 1o ON, |
. A=, 10
3%, = 7= NNa) 5=, (19

where subscripts range from | to 2 only. The shock surface expands radially from the Xs-
axis so that for all time we have Ny = ny = Ry = M; = 0.

We now proceed to determine the shock velocity. By expanding (=f,] in a Taylor series
about the unstrained state £, = 3,, and using (8). (5) and the compatibility relation
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N,
FJd=—-=—[tl 11)
(Ful = — el (
we obtain
d> . ¢ E
[n] = Eu,aR N3+ |A/BkCRijNBNC
¢3
~ U EM;BI:C‘IDR RRNgNcNp+0(9Y).  (12)
N
Similarly,
¢’
(r4] = "’ E,’,,,,R N+ 50~ U7 Ex s R;RNgN
¢J
- g0 EttimoR ReRNpNeNo + 0. (13)
Therefore, we have
b ., ¢* ¢ =
[r4] = — U EfaR Ng+ 503 E,“m( R, R NN~ U7 ELaein R R RINg NNy

+[I’](ﬂ: J, Eh,nR Nn+ b E:A;nk(R RanN()+m~“ O(*). O([plpY}. (14)

where

lAlll = E;A;Il+p LH/hv
def
i+ - ! + fRat
Lhme = Elyymetp E:Aiﬂk('° (15)

On entering (14) into the jump condition (2) and using the skew-symmetric properties of
EY 5 and EY ye, we obtain

¢ . ¢’

pUsRp— D;Q?;R,+ 303 Qi R;R,

3
- o GiuR RR +[PIEE] N, = max (099, 0((A18). (16)

where
Qr' = MjBNANIlv

. defl
Q:/k = EH/BI:CNANBN(v

i = EitimcoN NaNcNp. )
By evaluating (4b) at the wave front, we see that 2, = §,,. Therefore, by (9b),

N, =n,. (18)
It can be shown (see Fu, 1988) that for the unstrained isotropic material considered here

R, and Q~§,-HR,R,, R, are both aligned with the azimuthal vector R;, whilst Q~f,-,,R,Rk is
aligned with the radial vector n,. We may therefore write
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Q:\/R/ = p(-/iR,. Q~fij1Rk = mn,. Q~n“./kIR;RI¢RI = #.‘.Rn (19)
where

def def

i~ ~. def
pUL = Q5RR. u = QiunRR.. p:=05uRRRR,. (20)

[t is possible to give more explicit expressions (see Fu, 1988, p. 200) for the quantities
appearing in (20):

= -P(S:+8n+4€1:+4€:z)~ 2n

where, for example, ¢, denotes de({\. I,)/¢1, evaluated in the unstrained state. For future
use. we also write down here the following relations which have been shown (see Fu, 1988)
to hold for isotropic materials:

E (sRRNg=pCiN,. (22)
Eifpuct, RRNgN¢ = 1, N,. (23)
Ei me R, RMNgNe =0, (24)

EimeRR RS 4N = 0. (25)

With the further use of relations (19), we reduce (16) to
(nuli -p03= U :/»l)we (, IR U»[ﬂl)n = mux {O(¢*). O([pld")}. (26)
Since R, and n, are orthogonal, relation (26) implies that

pU

“a

=pUi+ %¢ +0(¢"), 27)

(ol = — ._;(‘;i 6 +0(4*), (28)

so that the order term in (26) may be replaced simply by O(¢*).
It cun be shown that the jump form of the second law of thermodynamics together
with the expression for the entropy jump imposes the condition

s 20, (29)

which must be satisfied by a given material if it is to transmit transverse shock waves. This
condition is also sufficient to ensure that the propagation speed of a transverse shock is an
increasing function of the shock amplitude, as is clear from (27). It is also important to
notc that eqn (27) contains no term that is linear in the shock amplitude, a fact that was
mentioned in the Introduction and is in sharp contrast to the situation for dilatational
shock waves [sce Fu and Scott, 1989a. eqn (3.6) : 1989¢, eqn (3.9)]. We see from egn (28)
that the jump suffered by the arbltrary pressure is of only second order in the shock
amplitude.
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3. MODULATED SIMPLE WAVE THEORY

In this section. we establish a modulated simple wave theory for transverse cylindrical
motions, which is the basis of the shock-fitting method to be used in the next section. To
fix ideas. we consider the motion of an unstrained incompressible isotropic elastic non-
conductor initially in a state of rest occupying the region r > ry with the purely azimuthal
velocity ¢, at the boundary prescribed by

(30)

w@®R. 0<t<T,
l'ilrsr,, = 0. otherwise,

where w(¢) is a given function of small magnitude. By integrating (30) we see that specifying
the azimuthal velocity also specifies the azimuthal displacement on the boundary and so
the present problem is equivalent to a displacement boundary value problem. To character-
ize the wave amplitude, we introduce a dimensionless small parameter defined by

£= l axrlw(t)!. 30

= m
Uy o<is

We assume that the duration time T is small compared with the time scale over which
geometrical attenuation becomes significant so that (30) represents a small-amplitude, finite-
rate pulse of short duration.

On substituting (3) into (1), we obtain

EMHIF/”.A +I’,,4n:»l = I)l.',- (3:)
where

E.A,u = E:Q;u""l’E:A,n- 33

These equations are to be solved, together with the compatibility relations

FI” = Ul'”. (34)

subject to the boundary conditions (30).

We may assume that conditions at the boundary r = ry are carried into the region
r > r, by wavelets subject to geometrical attenuation. 1f we use ¢(r, f) = 2 to denote the
witvelet which leaves the boundary at time a, we can then take (X, ¢) in place of (X 4. 1)
as the independent variables and we have the relation

o(re,2) = 2. (35)

However, since according to our smail-amplitude, finite-rate assumption, the variations of
the quantitics £y and ¢, with respect to ¢ are two orders of magnitude greater than their
variations with respect to X, for purely transverse waves, we should replace ¢ by the scaled
variable 0 defined by

N
0 =200 (36)
£
so that we have
Fy= ['::.4(/‘,.4'0)9 (37)

v, = ,(X,.0). (38)
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p = p(r.0). (39)

This argument clearly has the same motivation as the method of matched asymptotic
expansions (see Nayfeh, 1973, p. 110), which is often used in dealing with boundary layver
problems. Here 0 < x < T can be taken to be the inner region, x > T the outer region. Note
that we are only concerned with the inner region.

We look for perturbation solutions of (32) and (34) of the form

H,=eH (X 0+ HHX L0+

=X D+ X+,
p=p +ep (r.O)+eps(r. )+ -, (40)

where the displacement gradient is defined by
Hy=F,—0y

and assumed to be Of(e) initially. Because of the purely transverse nature of the waves
discussed here, no even powers of ¢ are required in the expansions of H,, and r,. The initial
arbitrary uniform pressure is denoted by p*. As has already been remarked we shall find
that the arbitrary pressure p does not appear in the final equations.

To simplify the analysis, we first contract (3) with R,. It can be shown that F;'N, is
aligned with o, and by (4b) so is n), V. We therefore have

13.: ‘fﬂlel"'lﬂ..' = [":x Rn (41)
where we have used the orthogonality relation (7) and the fuct that p, is proportional to

N“.
Expanding £, about the natural state and using (40), we have

. or AL h At 34
Ean= Elgteimetlid +p Bl )

'H::( EL,S,w-mHi?IIi}:’ +P:E:;;& +p E:;;Ilkt'i{ip) +o (4D

On substituting (40) and (42) into (34) and (41) and replacing () 4 and () respectively by

O v lon 2 ana Loy, f
ox, Ter O lNagy AN¢ 2z

we obtain

’ M (.“. - >
{(p,N‘ ;(.'0 +e } XL+ (X 0+ )

X,

{HN X, O+ HNX O+ -} (43)

it

-

and

(E s+ oS mc HE +piElf )
+£7 EE,R,mmf-fii’ iy ‘*‘P:E:;;a + E:;;‘x&(*ﬁi?)‘*' e

¢

5
‘R, {‘P.r N, (;;{’) +&t ';.—{;'} . {H‘,H(Y‘ 0) +s’H‘,'},'(X,.. 0+ - }
A

\
= pRo, ,;;} X+l (Y + - (44)
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As a consequence of the purely transverse nature of the wave motion the term in ¢ in
(44) may be shown to vanish identically. The leading order and next order terms of (43)
and (44) then yield the following four partial differential equations:

EH(” ev(l_l)
—L_ 4
¢H'Y ety iy
= 4
D Co P, Vg 10 + E.’Yg ( 6)
oH'Y auh
(p EAIBRNi 60 —p(lel 60 (47)
(-;H(n FH“’ .
E,],BR,<(P,N,4 30 + ax ) GEL s HCH Y +p2Ell s
Ay
N l‘l”) (':l,(l)
+p :’A/Bk("”(?)(p.rRiNzl ‘(1—0’— = po,.R; - 70 . (48)

To solve this set of equations, we first substitute for I} /20 from (45) into (47) to

obtain
"I P S
No,) ~P0% )R =0 “9

where we have made use of (15a), (17a), (20a), the skew-symmetric property of £3,,4 and
the fact that ofY and &0l /00 are both aligned with R,. Denoting Rt by a(r, 0), we may
write

o = a(r,0)R,. (50)

Since da/d0 should not vanish identically, (49) implics that

- Uy H

s

for outgoing wavelets. Integration of (51) subject to the boundary condition (35) then gives

r—ry
O =1t— —

v (52)

If the motion docs not contain any shocks, then both A} and ¢!" vanish at 0 = 0 and
integrating (45) from 0 = 0 to & = 0 with the use of (50) .md (52) yields

H'Y = — — N,R,a. ' (53)

_(7

We proceed now to the next order approximation. On substituting for dH'3/20 from
(46) into (48) and making use of (50)-(53), we obtain
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c(R,a) c(NsR.a)

Et;/ﬂRu‘VA (’Y EA/BR EY
*g L]

1

cl Ef;;e&c oRN,R, VaRANCRaNoH =0, (34

9

L

where use has also been made of (19b) and the skew-symmetric properties of E7,,.
E?; e and E% pcio. With the use of relations (10). (54) becomes

-

_.Ca . a . . a
22U (—r "P(/S'; - Ez:jB(R:";’NA Mp+ R:”;‘fwﬂ“s"&R;os.{);

&
| =

23]
U

EincoRN R NgRANRNpa* Tg*o (55)

It can easily be shown with the aid of (6) that

ElgRn N Mg= —1,
EXsRnM Ny =1,
ElsRR ;=0 (56)

while differentiating (22) with respect to Xy and using (10) gives
Ef (RN My+Ru,M Ng—RR,S,p) = =2pU3. (57)
On inserting {56) and (57) into (55) and noting (135a) and (20c¢), we arrive at

. a f o Llu
. Cm gt =0, 58
Fto AT (38)

where

’fz--~-~=6 Pt e L2 (59)
is a dimensionless quantity whose magnitude is a measure of the degree of material non-
lincarity. The third term of (58) arises, therefore, from material nonlinearities but the second
represents the effect of curvature. Thus eqn (58) expresses a balance between nonlinear

cffects and geometrical effects.
On defining new variables

roo r
s=r,log o a(s.0) = - alr. )
3

o
we find that (58) reduces to

da ﬂ ,Cd
o=y @ 60
FR T/ Rl (60)
subject to the boundary condition at s = 0 (i.e. at r = ry)
€d(0,0) = w(c*®) 61

obtained from (30). An equation of the same form as (60) was obtained in a study of plane
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transverse shear waves [see Lardner (1985), equation preceding (12)]. The solution of (60)
is obtained in the standard way by observing that

d(s,0) = constant

along curves governed by

o__5
- any”
so that,
d=40,0), 0-0,=— é a*(0,0)s, (62)
0 a0

where 6 = 0, at s = 0. With the use of (30), (61), (36), (40) and (50), we may recast the
solution (62) in terms of the original variables:

ro r—ry ﬁ ro
o= [ , = . — 3
v \/:u(z)R,. t=oa+ Ty 4U~ w?(a) log (63)

Relfations (63) constitute the desired modulated transverse cylindrical simple wave
solution of equation (58) subject to the boundary condition (30). If w(x) is monotonic
cquation (63b) can be solved for a in terms of r and ¢, so that (63a) then gives the velocity
distribution explicitly in the simple wave region.

We can sce from the nonlinear solutions (63) that the wave amplitude has the same
form as in the lincar theory, but the characteristic variable a is constant along characteristics
{63b) determined using the nonlincar theory. Integration of the nonlincar characteristic
velocity dX/de = (E,,,5sNNsRR,/p)"'? gives the same expression as (63b). Our theory can
be shown to give the sume results as the nonlincarization technique described by Whitham
(1974, Chapter 9).

If'instead of propagating into an unstrained quiescent region, the wavelets are preceded
by a shock and the shock is advancing into an unstrained quiescent region, then because
of the reflection from the shock, the motion behind the shock is not exactly a modulated
simple wave. However, substituting (27) and (40) into (I1) shows that (53) is satisfied
immediately behind the shock. This implies that the reaction of the shock on the motion
behind cun be disregarded to leading order and a shock can be fitted into the above
modulated simple wave solution.

4. THE EVOLUTION LAW OF SHOCK WAVES

In this section we proceed to determine the evolution law for transverse cylindrical
shock waves using the above modulated simple wave theory and the shock-fitting method.
We assume that R,p,|,.,, = w(r) is of the form shown in Fig. 1, so that a shock is initiated
at ¢ = 0 at the boundary r = r,. It can easily be deduced from (63) that the graph of ¢, R,
versus £ can be obtained by translating and stretching the graph of \/r(,/r w(x) to the right
by a distance given by

r—r r
A(w(x)) = T 2 - Iﬂﬁ% w
N

,
2 l -,
() log Py

and will be multivaiued when A(p,) < ¢ < A(0) if B > 0. [We note from (29) and (59) that
the second law of thermodynamics requires 8 > 0 for the transmission of such transverse
shocks to be possible.] To obtain a single-valued solution for R,v;, we fit a shock into the
multivalued region. Assume that the shock position is given by ¢ = S(r) as illustrated in
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4

w(d)

’_L-—-—-—_

4

Fig. 1. The initial disturbance w() at the boundary r = r,.

Fig. 2. and that when the vertical straight line segment A8 is mapped back to its initial

position in Fig. 1 it corresponds to the curve A" B’. Then we have

(t’ = [Rll‘I] = \/é w(“l)-

S(r)=1|+i:r“ frq

UN ZU‘; W (a]) lo& -

In addition, since S7(r) is the reciprocal of the shock speed. we have from (27) that

soe (1= o)
=g ' g:% )

On climinating S(r) from (64)-(66), we arrive at

| pro r \d( [r goraf [r Y
(;—';(1,) 2077 '8 ‘\/r’;"’)&?(\/?o"’) 6u~r(\/.,"’)=°’

(64)

(65)

(66)

(67)

where «, can be expressed in terms of the shock amplitude ¢ by inverting (64) provided
that w(x) is monotonic when a > 0. Equation (67) is an ordinary differential equation which

can be solved for the shock amplitude ¢ once w(z) is given.
As an example, we consider the following loading programme:

o &) sir) 50 ;

Fig. 2. The subsequent disturbance at interior values r > r,.
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d(1-2/T)", 0<a<T,
2= . 68
w(2) {0. otherwise, (68)
where m is a positive parameter. ¢, = ¢(0), and the duration time T is chosen as
doym
T=--——. (69)
Yo

so that the amplitude of the accompanying second-order discontinuity has the initial value
o which is independent of the parameter m. On substituting (68) and (69) into (67). we
obtain

1 rd)'""”'"d(\/T) ﬂro\/7( r) d<\/Z)
w“(\ﬁar) o \Wr?) 20V R\ )P e\ ?
r2(J5e)
DL Y B =0. (70
60 r\Nr, ¢ (70)
After multiplication by \/r/r, ¢, (70) may be integrated directly to give
1
y“’“""’+<|+ ~—>x_v’ =1, (@)
m

where the notation

r¢
Fo b

B

r
X = 60,:, ‘bu'/’u’o IOg ': =

(72)

has been introduced. Equation (71) is an algebraic equation for the shock amplitude, which
can be solved for any positive value of m, and shows that the evolution law for a shock
wave depends upon m and thus depends upon the detailed boundary conditions. This is in
contrast with acceleration waves for which the evolution law depends only on the initial
amplitude. An examination of (71) reveals that for decaying shocks we require x > 0 for
r 2 r,. Thus it is clear from (71) and (72) that the shock decays if the amplitude of the
accompanying second-order discontinuity is such that

$ao <0, (73)

since f§ defined by (59) is required by the second law of thermodynamics (29) to be non-
negative,

5. THE SINGULAR SURFACE METHOD

An evolution law for the type of shock wave under discussion can also be derived by
using the singular surface method as explained in various different contexts by Fu and Scott
(1989a,b.c). Here we give only an outline of the procedure and present the main results.
The detailed analysis can be found in Fu (1988) and may be obtained from the first author.

Essential to the singular surface method is the basic compatibility relation
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é

(61 =G0+ F16) (79

where G is an arbitrary function and ¢/8.X,, is the space derivative following the wave front
(see Fu and Scott. 1989c).
Taking the jump of (1) with the use of (74) gives

é
o[- ’—J— [ = plE]. (75)

while differentiating (1) with respect to time and then taking the jump with the use of (74)
yields

é .. N i
3, [, - U-‘ [%.4] = plé]. (76)

The expressions for #,, and £, can be calculated with the use of the relation (3). Taking
the jumps of these expressions and expanding the right-hand sides into Taylor series as we
have done in (12), we obtain the approximate expressions for [#,,] and [#,,]. On substituting
these expressions and (14) and (27) into (75) and (76), we obtain after a great deal of
nutnipulation the following cvolution equations :

dq "
ab + ‘)l)r 6{,« ¢ =7, 4’“ +max {0(4"). U*¥)}. an
dlp 'p 177 (p
dr + 2r +iUs r 7UN o0
Y 0%, O '$?),0(¢* 1)}
= 7270 +7 - +max (0(°). 0(4'9). 0('¥*). O™ v} (78)
where

def . def .
'I/ = Rl[vll’ X = Ri[vl]'

denote the second- and third-order discontinuities, respectively. The material constant f§ is
defined by (59) but the material constants y,, y,, y3 are not given explicitly since they do
not appear in our final results.

The evolution equations (77) and (78) are to be solved simultancously using per-
turbation methods, subject to the initial conditions

Flrary = o, and Yl =Y. (79

Two cases must be distinguished. In the first case, the shock amplitude ¢ is small but
the amplitude ¢ of the accompanying second-order discontinuity is of order one (when
appropriately scaled). The shock waves covered by this case are of small amplitude and
finite rate. and have the same character as those treated in the previous two sections. [t can
be shown that the leading order solutions of (77) and (78) which are uniformly valid with
respect to the distance of travel are given by
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0 30\{ 0 -4
e =¢of;{ b1 30 20); g}

{owa) if % =0(@h).p> 1
tlowd if x=o0().

- 4 -3:4
v oo (1- 200900 B (1230000 i0g ™ 0.

In the other case. when ¢ and ¢ are both small and are of the same order of magnitude,
the evolution laws can be shown to be given by

2 3Uy o -
= "’“\[{ stz (1= g os 2}

{0(¢3). it x=0().p=3

(80)

|
0@i). if x =0 (82)

0 3Uv ] 2p 30\, 0 0 -4

v = ”f(‘ " %M' +307 "’"*”"(' 8o %) loe 3}
3 "o ¢1|0.v 2f8 3UN b rol” s

+ 8 \/r T { o quwu( Sr., Wu)ro log - }
{0(4::.). T x=0Wh.p2l
P owd). it 1 =03 (83)

Thus we sce that the two pairs of evolution equations (80), (81) and (82), (83) form
two scts of evolution laws for the shock amplitude and the amplitude of the accompanying
second-order discontinuity, the first valid for the case ¥, = O(l) and the second for
Wy = O(¢hy). 1t can easily be scen that (80) and (82) may be written in the single form

o 26 304 o rol” "
4’(")=¢o\/ {l+‘3Ul ¢u¢0( 8 " 'ﬁ )’0'037}

{0((#3). it x=0Widh).p>

3 84
Flow@d. it x=o0wi. (84)

Although (83) is different from (81), it reduces to (81) if we take , = O(1) since the second
term of (83) may then be neglected compared with the first. Therefore, eqns (84) and (83)
can be taken to be the universal evolution laws for the shock amplitude and the amplitude
of the accompanying second-order discontinuity.

In the case Yo = O(1) the evolution law (80) may be writlen

y={l+4x}-'" (85)

in terms of the notation (72).

6. DISCUSSION

On comparing the evolution laws (71) with (84), which are derived respectively by
using the shock-fitting method and the singular surface method, we see that they do not
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agree exactly for any value of m. Agreement is not to be expected in the case ¢, = O(¢,)
for then the small-amplitude, finite-rate assumption made in deriving (71) is violated.
Neither is there exact agreement, however, between (71) and (85) in the case ¢, = O(1) for
which such agreement might have been expected. In order to examine the discrepancies we
expand both (71) and (85) for small x:

_ . bm—1 , (m-DOOm-1) |
o= ¢l,exp(—x/()){l —-X+ oy X°— I X'+ } (86)
& =oexp(—x/O){l—x+ix -y ), (87
respectively, and for large x:
& ~ doexp (—x/0) (1 + 1/m)x} V3, (88)
¢ ~ doexp (—x/o)(dx)" ", (89)

respectively. The dimensionless quantity J defined by

def
0= - 3-(1‘;‘; Go¥ore
is small and positive. For small x the expansions agree as far as the linear term ; they agree
as far as the quadratic term for the lincar loading programme (68) in which m = 1. For
large x both asymptotic expansions predict a shock amplitude ¢ that is exponentially small
compared with its initial magnitude. Henee for all x, the difference between the solutions
given by (71) and (85) is at most of order ¢, il i # | and ¢ it m = 1. Therefore we may
conclude that these solutions do, in fact, agree with each other. at least to leading order.
We now discuss the effects of material nonlincarity on the cvolution of transverse
cylindrical shock waves. We have already remarked that the material constant ff defined by
(59) is a measure of the degree of material nonlincarity present and we now observe that it
enters into the asymptotic expressions for the shock amplitude solely through the variable
x defined by (724) which increases only logarithmically with the radial distance r. Thus we
sce that both (71) and (84) display an important fact, namely, that the effects of nonlincarity
on the evolution of transverse cylindrical shock waves are cumulative and are most pro-
nounced when x = O(1), that is, when r satisfies the order relation

riry = O(exp (2/9)).

However, at distances of this order the shock amplitude has alrcady been attenuated by
geometrical spreading to order exp (—1/9). Therefore, by the time nonlinear effects have
become significant, geometrical spreading has already made the shock amplitude expo-
nentially small. Alternatively, we may say that over distances comparable with the initial
radius r,, the variable x which meusurces the effect of nonlinearity remains close to zero.
Arguing from cither standpoint, we may conclude that the lincar evolution laws

'; ;; 304\' $o 3 ":» bo U.v

obtained by taking ff = 0 in (84) and in (83), give satisfactory results for the propagation
of transverse cylindrical shock waves in unstrained isotropic elastic non-conductors. This
is in sharp contrast with plane transverse shock waves in similar materials for which the
linear theory predicts constant values for the amplitudes ¢ and §, whilst the nonlinear
theory predicts amplitudes that decay with the distance of travel [see Fu and Scott (1989b),
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eqns (4.52) and (4.53)]. We must conclude that geometrical spreading is a more potent
decay mechanism than is material nonlinearity.

To complete the picture we describe how to obtain the above-mentioned plane wave
solutions from the cylindrical wave solutions presented here. If r, — % and r - = in such
a way that X = r—r, remains finite then we have

o X ro
—xl——, rlog—= —X.
r 2ry r

On inserting these approximations into (84) and (83) and taking the limits ry —» 0, r -
we find

14

5 -
4 o'boX} . on

2 -1:4
¢=¢o{|—ﬁ¢o¢’ox} . ¢=¢o{l—ﬁ¢

which are the same as the equations of Fu and Scott [1989b, eqns (4.52) and (4.53)]
allowing for differences in notation. By putting # = 0 in (91) we obtain the constant linear
approximations ¢ = ¢, and ¢ = ¥, for plane waves, whilst the linear approximations for
cylindrical waves (90) are not constant because of geometrical spreading.
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